

# Reliability Testing and Validation Specification

**Proprietary and Confidential** 

# Validation Test Plan for High Voltage Battery Coolant Hoses

TESLA MOTORS CONTACT

Alexander Yee, Richard Baker



Document #: TP-0000972 Revision:

1.0

| Document History |
|------------------|
|------------------|

Release Date:

TBD

| Version | Date | Description     | Author        |
|---------|------|-----------------|---------------|
| 1.0     |      | Initial Release | Richard Baker |
|         |      |                 | Alexander Yee |
|         |      |                 |               |
|         |      |                 |               |
|         |      |                 |               |
|         |      |                 |               |
|         |      |                 |               |



Release Date:

TBD

Document #: TP-0000972 Revision:

1.0

| DOCUMENT HISTORY                                     | 2  |
|------------------------------------------------------|----|
| 1 SCOPE                                              | 5  |
| 2 TEST REQUIREMENTS                                  | 6  |
| 2.1 Documentation                                    | 6  |
| 2.1.1 Documentation of Changes                       | 6  |
| 2.1.2 Documentation of Testing                       | 6  |
| 2.2 Test Setup                                       | 7  |
| 2.2.1 Default Values & Tolerances                    | 7  |
| 2.2.2 Temperature conditions during the test         | 8  |
| 2.2.3 Coolant Composition                            | 8  |
| 2.3 Reporting Test Status                            | 8  |
| 2.4 Pass Criteria                                    | 9  |
| 2.4.1 Visual Inspection of the DUT                   | 9  |
| 2.4.2 Room Temperature Burst Resistance              | 10 |
| 2.4.3 Elevated Temperature Burst Resistance          | 10 |
| 2.4.4 Failures During the Validation                 | 11 |
| 2.4.5 Incomplete Testing                             | 11 |
| 3 VALIDATION                                         | 13 |
| 3.1 Test Plan                                        | 13 |
| 3.2 Leg 1 - Mechanical Durability                    | 15 |
| 3.2.1 Vibration with Thermal Cycle                   | 15 |
| 3.2.2 Shock Durability                               | 16 |
| 3.2.3 Shock Collision                                | 18 |
| 3.2.4 Burst Test                                     | 19 |
| 3.3 Leg 2 – Environmental Durability                 | 19 |
| 3.3.1 Low Temperature Endurance (LTE)                | 19 |
| 3.3.2 High Temperature Endurance (HTE)               | 20 |
| 3.3.3 High Temperature and Humidity Endurance (HTHE) | 21 |
| 3.3.4 Burst Test                                     | 22 |
| 3.4 Leg 3 – Thermal + Mechanical Durability          | 22 |



Release Date:

TBD

Revision:

1.0

| З   | 8.4.1 | High Temperature and Humidity Endurance (HTHE) | 22 |
|-----|-------|------------------------------------------------|----|
| З   | 8.4.2 | Coolant Thermal Shock (CTS)                    | 22 |
| З   | 8.4.3 | Pressure Cycling Endurance                     | 23 |
| 3   | 8.4.4 | Vibration with Thermal Cycling                 | 25 |
| З   | 8.4.5 | Burst Test                                     | 25 |
| 3.5 | Le    | eg 4 – Handling and Abuse                      | 25 |
| З   | 8.5.1 | Cable Bend Test                                | 25 |
| 3   | 8.5.2 | Handling Drop Test                             | 26 |
| 3   | 8.5.3 | Burst Test                                     | 27 |
| 4   | REI   | FERENCES AND GLOSSARY                          | 27 |
| 4.1 | N     | ormative References                            | 27 |
| 4.2 | А     | cronyms                                        | 31 |

| 1     | Reliability Testing and Validation Specification |               |             |           |  |
|-------|--------------------------------------------------|---------------|-------------|-----------|--|
|       |                                                  | Release Date: | Document #: | Revision: |  |
| TESLA |                                                  | TBD           | TP-0000972  | 1.0       |  |

# 1 Scope

This document defines the reliability validation test requirements of coolant hoses used in the High Voltage Battery Coolant Loop. Reliability Engineers shall use this document to identify the test requirements necessary to validate the reliability of the DUT. Where applicable, validation testing shall be performed at the assembly level in order to test the interactive effects between connectors in which they are mounted.

This document defines test plans specific to the success-run approach, where all units must pass the test in order to validate the reliability requirement. This document can be seen as a repository, from which tests may be selected for a specific component or system. Sample sizes and test durations may be adjusted with the approval of the Reliability Engineer. DUTs that have passed similar reliability validation test plans or have in-field reliability performance data may be exempted from this requirement with the approval of the Reliability Engineer.

Acceptance of the test reports does not automatically result in a release.

This document does not describe the methods required to produce a reliable component design. Development tests such as Finite Element Analysis, etc., and development activities such as DFMEA and Fault Tree Analysis shall be performed in house or by the supplier early in the design process so that reliability risks can be addressed in advance of validation testing.

Note: The tests described in the document do not replace component qualification tests or the qualification of the manufacturing process.



|               | •           |           |
|---------------|-------------|-----------|
| Release Date: | Document #: | Revision: |
| TBD           | TP-0000972  | 1.0       |

# 2 Test Requirements

The test engineering team is responsible for providing all of the testing resources, including test equipment, measurement gauges, hardware, software, and the required technical and management personnel to complete the testing and analysis within the agreed upon timeframe. Upon request, the test team shall provide proof of calibration certification of all test equipment and measurement gauges.

The Laboratory needs to be certified by the DIN EN ISO/ IEC 17025 and or by QS 9000. Tesla Motors reserves the right to visit the test facilities and check the test procedures.

# 2.1 Documentation

Documentation of all tests is an important part of the validation. By documenting the test results and test conditions, all test data and assumptions for the testing are acknowledged in detail and can be understood by other engineers.

# 2.1.1 Documentation of Changes

Any changes made by the supplier have to be documented and reported to the Design Release and Reliability Engineers. Changes are, for example, changes in the design, function, production process, location of the production, testing procedure, or test cycle.

# 2.1.2 Documentation of Testing

The supplier shall provide a written report on the completed qualification test including the following items:

- The testing procedures and equipment
  - test date and duration
  - type of test
  - purpose of test ✓
  - test standard edition
  - test parameters like chamber conditions and operation mode
  - o test methods 🗸
  - o test environment 🗸
  - calibration data and uncertainties of measuring system
  - o test sequence
- Detailed test results



Revision:

1.0

- o parametric measurements
- o photographs of the DUT and test equipment

Document #:

TP-0000972

- pass and fail criteria of the DUT
- o performance of test specimens
- summary of the test and test results
- results of the visual inspection

as described in each <u>IEC standard</u> of the test. Results measured as numerical values must not be reduced to pass/fail information, but should be documented as numerical values and shall be included in the test report. The format of the test documentation shall be agreed upon between the supplier and the Reliability and Design Release Engineers.

# 2.2 Test Setup

A test fixture shall be required to mechanically simulate the intended system and exercise all functions of the DUT. The test fixture shall simulate the mounting position, including the appropriate hose routing and connectors. Unless otherwise specificed, productionrepresentative connectors shall be used for testing. Test equipment must be able to withstand vibration and shock intensities specified in this document. If not explicitly specified, the DUT shall be mounted in vehicle orientation during the test. If vehicle orientation is not specified, verify with a Reliability or Design Engineer before conducting the test.

# 2.2.1 Default Values & Tolerances

In the absence of any value specification and tolerances, the following values shall apply to all validation tests:

| Definition        | Value                                      |  |
|-------------------|--------------------------------------------|--|
| Frequency         | f = Spec ±1%                               |  |
| Relative Humidity | rH = 45% - 75 % ±5%                        |  |
| Room Temperature  | T <sub>RT</sub> = 23 ±5 °C                 |  |
| Shock             | Spec ±20%                                  |  |
| Test Temperature  | T <sub>Test</sub> = T <sub>max</sub> ±3 °C |  |
| Time              | t <sub>⊺est</sub> +2%, -0%                 |  |



|               | 0           |           |
|---------------|-------------|-----------|
| Release Date: | Document #: | Revision: |
| TBD           | TP-0000972  | 1.0       |

| Definition | Value     |
|------------|-----------|
| Vibration  | Spec ±20% |

# 2.2.2 Temperature conditions during the test

At steady state conditions during active operation of the DUT, the temperature shall not change more than  $\pm 3$  °C at the component location at any time. **The temperature shall be tracked through active operation for the duration of the test**. The time constant for the steady state conditions must be evaluated before starting the active testing. The documentation of any temperature changes larger than  $\pm 3$  °C is required and must be reported to the Reliability Engineer.

# 2.2.3 Coolant Composition

For tests specifiying the use of coolant, a mixture of 50% ethylene glycol and 50% water should be used.

# 2.3 Reporting Test Status

A weekly report of the test status has to be sent to the Reliability Engineer, including

- Test profiles (temperature, resistance measurements, current profiles, ...) as defined in each test
- Status of functional checks

Pass/ Fail

• Percent complete

# 2.4 Pass Criteria

In order to validate the reliability of the DUT, the supplier must demonstrate 100% success for all tests specified in the Validation Test Plan. A test is successful if the test is completed and the DUT passes all functional requirements, passes the visual inspection, and meets all specifications in the DUT's specification document following the final test in the test leg.

The results of the functional tests and visual inspections must be reported to the Reliability and Design Release Engineers.

To better understand how the functional test and the visual inspection have to be done, please review the following descriptions. Functional and visual inspections may be modified by the Reliability and Design Release Engineers to properly assess the functionality of a specific component.

# 2.4.1 Visual Inspection of the DUT

#### Purpose:

Visually identify and document any defects or failures of the DUT caused by testing.

#### Procedure:

To inspect the DUT visually, the enclosure of the DUT has to be disassembled. The visual inspection of the DUT involves the analysis of all possible failure modes and mechanisms the test was designed for.

#### 1. Documentation

Following the completion of each test, each DUT shall be digitally photographed in its final state. Following the completion of all tests in a test leg, the DUT shall be torn down and photographed to show:

- Exterior surfaces of the coolant hose
- Coolant hose-to-connector fittings
- Evidence of cracks, discoloration, hose degradation, or leaking

# 2. Inspection of the DUT

The DUT has to be inspected externally by a microscope after the test. During the inspection, the focus should be on the following anomalies:

- cracks in the hose
- sealing failures (leaking seal)
- change in the color and look of the DUT
- change in hardness, elasticity, or other mechanical properties

A summary of the inspection results must be documented and reported to Tesla Motors. **Any failure in the test and any anomalies must be photographed and documented in the final report.** If additional failure analysis (X-ray, cross sectioning, SEM, etc.) is required, the further failure analysis must be coordinated by the supplier and the Reliability and Design Release Engineers.

All possible failure modes that are known for the product should be taken into account during the inspection, including any not listed above.

# 2.4.2 Room Temperature Burst Resistance

#### Purpose:

Validate the coolant hose ability to maintain a burst resistance greater than 150 psi throughout its operational lifetime.

#### Procedure:

Fill the DUT with room temperature water and apply pressure to 100 psi using a pressure ramp rate of 1000 psi/min. Hold 100 psi pressure for 1 min and then apply pressure at 1000 psi/min until failure.

# 2.4.3 Elevated Temperature Burst Resistance

#### Purpose:

Validate the coolant hose ability to maintain a burst resistance greater than 150 psi throughout its operational lifetime when subjected to the highest expected operational temperature.

#### Procedure:

Reliability Testing and Validation Specification



Fill the DUT with water or coolant at 70°C and soak for 1 hour. After 1 hour, apply pressure to 100 psi using a pressure ramp rate of 1000 psi/min. Hold 100 psi pressure for 1 min and then apply pressure at 1000 psi/min until failure.

# 2.4.4 Failures During the Validation

If a DUT fails during any of these tests, the supplier shall conduct a root cause analysis to determine the cause(s) of failure(s). Notify Tesla of any test incidents (anomalies, defects, failures, etc.) within 48 business hours of findings (root cause analysis not required at time of notification).

Following the analysis, an 8-D written report must be provided to the Design Release Engineer and Reliability Engineer containing the following sections:

- 1. Team members
- 2. Problem description
- 3. Interim (short term) containment/actions
- 4. Root cause analysis/identification
- 5. Permanent corrective action
- 6. Verification (to determine effectiveness of permanent actions)
- 7. Prevention of problem recurrence and
- 8. Review

The effectiveness of the corrective actions must be shown by repeating the entire test sequence with new samples, and not by continuing the sequence from the test in which the DUT failed. A truncated test may only be performed with the approval of the Design Release Engineer and Reliability Engineer.

# 2.4.5 Incomplete Testing

If for any reason the test cannot be completed before start of production, or if failures have been detected shortly before the start of production, a risk assessment must be made. The goal of the risk assessment is to identify the cumulative failure rate at end-of-

**UNCONTROLLED COPY** unless stamped "Controlled Copy" in red ink. Individuals using an uncontrolled copy are responsible for ensuring that they are using the latest revision of this document.

| Release Date: | Document #: | Revision: |
|---------------|-------------|-----------|
| TBD           | TP-0000972  | 1.0       |

life. The risk assessment must be structured as follows and must contain the itemized topics:

- I. Introduction
  - 1. Overview (project, part number, serial number, testing time, and period)
  - 2. Sample description
  - 3. Lifetime requirements
  - 4. Test plan (critical test leg or finished and unfinished test leg)
  - 5. Normative references and standards
- II. Issues
  - 1. List of critical components and failure mechanisms in the critical/unfinished test leg
  - 2. Mission profile
    - i. Lifetime requirements
    - ii. Operation modes
    - iii. Usage
    - iv. Critical load types for the failed/ incomplete test leg(s)
    - v. Critical components
    - vi. Mission profile
    - vii. Acceleration factor and durability testing
    - viii. Success run and reliability testing
  - 3. Comparison of the required and achieved testing time
- III. Risk assessment
  - 1. References to previous projects with the same testing and components (for calculation of the reliability)
  - 2. Calculation of the reliability/failure rate based on end of life tests and previous testing
  - 3. Forecast for the field reliability
- IV. Conclusion
  - 1. Effects of the system defects (likelihood, impact, risk score)
  - 2. Release for xxx years and reason for the release
- V. Follow-up
  - 1. Further testing
  - 2. Design changes
  - 3. Service topics

The results of the risk assessment must be discussed with Tesla Motors.

# 3 Validation

# 3.1 Test Plan

The supplier shall follow the validation test process below, starting at the top of each test leg and working through each subsequent test. The supplier is responsible for obtaining any additional test procedures referenced in the Validation Testing section. Tests may be omitted if they do not apply based upon the physical location or functional requirement of the DUT in the vehicle. A test may be omitted only with the approval of the Design Release Engineer and Reliability Engineer. In order to validate performance and continue with subsequent tests, a functional test and visual inspection must be completed after every test in the sequence, and a full tear down inspection must be performed after the whole test leg. Any deviation from the test setups described in this document must be approved by the Design Release Engineer and Reliability Engineer. Validation of the DUT is complete when 100% success (in functional test and visual inspection) is achieved for all tests.

The test plan summary is shown in Figure 1 below and will be provided in a different document and contains an <u>overview of all tests and test sequences</u>. The longest test duration for a given leg is approximately 9 weeks.

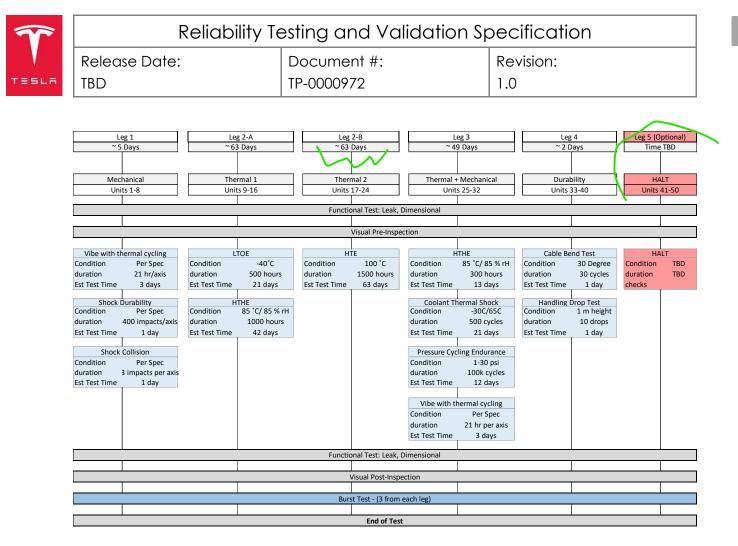



Figure 1. Validation test plan summary indicating test sequence and approximate test time.

# 3.2 Leg 1 - Mechanical Durability

# 3.2.1 Vibration with Thermal Cycle

#### 3.2.1.1 Purpose

Validate the component's ability to operate within its functional specification when subjected to a simulated operational life.

#### 3.2.1.2 Test Procedure

| Test                                                                                                                                                     | Description                                                                                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Sample Size                                                                                                                                              | 8                                                                                                                     |  |  |
| Operation Mode                                                                                                                                           | With coolant undergoing thermal cycling                                                                               |  |  |
| Tmin                                                                                                                                                     | -20°C                                                                                                                 |  |  |
| Tmax                                                                                                                                                     | 55°C                                                                                                                  |  |  |
| Ramp Rate                                                                                                                                                | 5°C/min                                                                                                               |  |  |
| Isothermal Hold at Tmin 1 hour<br>and Tmax                                                                                                               |                                                                                                                       |  |  |
| Vibrational Load Profile defined in 3.2.1.3                                                                                                              |                                                                                                                       |  |  |
| Vibration Excitation         Wide-band random vibration                                                                                                  |                                                                                                                       |  |  |
| Duration                                                                                                                                                 | 21 hours per axis                                                                                                     |  |  |
| Monitoring                                                                                                                                               | <ul> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |  |
| Test Procedure:                                                                                                                                          |                                                                                                                       |  |  |
|                                                                                                                                                          | tional profile specified in Section 3.2.1.3 .                                                                         |  |  |
| <ol> <li>Cycle the coolant temperature between Tmin and Tmax at a ramp rate<br/>of 5°C/min, with isothermal holds at Tmin and Tmax of 1 hour.</li> </ol> |                                                                                                                       |  |  |
|                                                                                                                                                          | ational profile while temperature cycling for 21 hours per                                                            |  |  |
|                                                                                                                                                          | est for each of the three axes.                                                                                       |  |  |



#### 3.2.1.3 Vibrational Load Profile

| X-Axis<br>RMS = 0.37<br>f [Hz] PSD [g <sup>2</sup> /Hz] |         |        |                          | Z-Axis |                          |
|---------------------------------------------------------|---------|--------|--------------------------|--------|--------------------------|
|                                                         |         |        |                          | Ř      | MS = 0.62                |
|                                                         |         | f [Hz] | PSD [g <sup>2</sup> /Hz] | f [Hz] | PSD [g <sup>2</sup> /Hz] |
| 5                                                       | 0.00150 | 5      | 0.01100                  | 5      | 0.02200                  |
| 15                                                      | 0.00700 | 15     | 0.01100                  | 13     | 0.02200                  |
| 20                                                      | 0.00700 | 20     | 0.00300                  | 20     | 0.00300                  |
| 33                                                      | 0.00080 | 50     | 0.00300                  | 50     | 0.00300                  |
| 88                                                      | 0.00020 |        |                          |        |                          |
| 200                                                     | 0.00002 | 200    | 0.00002                  | 200    | 0.00002                  |

#### 3.2.1.4 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

#### 3.2.2 Shock Durability

#### 3.2.2.1 Purpose

Validate the component's ability to operate within its functional specification when subjected to mechanical shock events produced by potholes or other small road events.

#### 3.2.2.2 Test Procedure

| Test                  | Description        |
|-----------------------|--------------------|
| Sample Size           | 8                  |
| Operation mode of DUT | Containing coolant |



| Keideling and Validation specification |             |           |
|----------------------------------------|-------------|-----------|
| Release Date:                          | Document #: | Revision: |
| TBD                                    | TP-0000972  | 1.0       |

| Environmental Conditions          | Ambient temperature/humidity                                                                                          |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Shock Load                        | Profile defined in 3.2.2.3                                                                                            |
| Nominal Shock Shape               | Half sine                                                                                                             |
| Number of impacts per orientation | 400 (200 in positive and 200 in negative direction)                                                                   |
| Monitoring                        | <ul> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |
| Test Procedure:                   |                                                                                                                       |

1. Fill the DUT assembly with coolant

2. Perform 400 impacts per axis according to the profiles outlined in Section 3.2.2.3

#### 3.2.2.3 Shock Durability Load Profile

| Axis | Load (G) | Duration (ms) |
|------|----------|---------------|
| X    | 4.4      | 10            |
| Y    | 14       | 9             |
| Z    | 7.3      | 11            |

#### 3.2.2.4 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

# 3.2.3 Shock Collision

#### 3.2.3.1 Purpose

Validate the component's ability to operate within its functional specification when subjected to mechanical shock events produced by minor collisions.

#### 3.2.3.2 Test Procedure

| Test                                                                                                                                             | Description                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Sample Size                                                                                                                                      | 8                                                                                                                     |  |
| Operation mode of DUT                                                                                                                            | Containing coolant                                                                                                    |  |
| <b>Environmental Conditions</b>                                                                                                                  | Ambient temperature/humidity                                                                                          |  |
| Shock Load                                                                                                                                       | Profile defined in 3.2.3.3                                                                                            |  |
| Nominal Shock Shape                                                                                                                              | Half sine                                                                                                             |  |
| Number of impacts per<br>orientation                                                                                                             | 3                                                                                                                     |  |
| Monitoring                                                                                                                                       | <ul> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |
| Test Procedure:                                                                                                                                  |                                                                                                                       |  |
| <ol> <li>Fill the DUT assembly with coolant</li> <li>Perform 3 impacts per axis according to the profiles outlined in Section 3.2.3.3</li> </ol> |                                                                                                                       |  |

#### 3.2.3.3 Shock Collision Load Profile

| Axis | Load (G) | Duration (ms) |
|------|----------|---------------|
| x    | 28       | 60            |
| Y    | 35       | 30            |
| z    | 12       | 10            |
|      |          |               |

| Reliability Te | esting and Validatior | n Specification |
|----------------|-----------------------|-----------------|
|                |                       |                 |

#### 3.2.3.4 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

### 3.2.4 Burst Test

Following testing of all components through the mechanical durability leg, three samples must be subjected to a functional burst test as outlined in section 2.4.2 to evaluate performance degradation of the hose.

# 3.3 Leg 2 – Environmental Durability

#### 3.3.1 Low Temperature Endurance (LTE)

#### 3.3.1.1 Purpose

Validate the ability of the DUT to withstand low operating temperatures in the field.

#### 3.3.1.2 Test Procedure

| Test                  | Description                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Size           | 8                                                                                                                                                         |
| Operation mode of DUT | Containing Coolant                                                                                                                                        |
| Temperature           | -40°C                                                                                                                                                     |
| Duration              | 500 hours                                                                                                                                                 |
| Monitoring            | <ul> <li>Leak Check every 150 hours</li> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |
| Test Procedure:       |                                                                                                                                                           |



TBD

Release Date:

- 1. Fill the DUT assembly with coolant
- 2. Place the DUT assembly in a chamber at -40°C for 500 hours

#### 3.3.1.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

#### 3.3.2 High Temperature Endurance (HTE)

#### 3.3.2.1 Purpose

Validate the ability of the DUT to withstand extended time at elevated operating temperatures in the field.

#### 3.3.2.2 Test Procedure

| Test                                                           | Description                                                                                                                                               |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample Size                                                    | 8                                                                                                                                                         |  |
| Operation mode of DUT                                          | Containing Coolant                                                                                                                                        |  |
| Temperature                                                    | 100°C                                                                                                                                                     |  |
| Duration                                                       | 1500 hours                                                                                                                                                |  |
| Monitoring                                                     | <ul> <li>Leak Check every 150 hours</li> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |
| Test Procedure:                                                |                                                                                                                                                           |  |
| 1. Fill the DUT assembly with coolant                          |                                                                                                                                                           |  |
| 2. Place the DUT assembly in a chamber at 100°C for 1500 hours |                                                                                                                                                           |  |
|                                                                |                                                                                                                                                           |  |

#### 3.3.2.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

# 3.3.3 High Temperature and Humidity Endurance (HTHE)

#### 3.3.3.1 Purpose

Validate the ability of the DUT to operate within its functional specification when subjected to extended time at high temperature and high humidity.

| 3.3.3.2 | Test Procedure |  |
|---------|----------------|--|
|         |                |  |

| Test                                                                     | Description                                                                                                                                               |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample Size                                                              | 8                                                                                                                                                         |  |
| Operation mode of DUT                                                    | Containing Coolant                                                                                                                                        |  |
| Temperature                                                              | 85°C                                                                                                                                                      |  |
| Relative Humidity                                                        | 85%                                                                                                                                                       |  |
| Duration                                                                 | 1000 hours                                                                                                                                                |  |
| Monitoring                                                               | <ul> <li>Leak check every 150 hours</li> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |
| Test Procedure:                                                          |                                                                                                                                                           |  |
| 1. Fill the DUT assembly with coolant                                    |                                                                                                                                                           |  |
| 2. Place the DUT assembly in a chamber at 85°C and 85% RH for 1000 hours |                                                                                                                                                           |  |

#### 3.3.3.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

# 3.3.4 Burst Test

Following testing of all components through the environmental durability leg, three samples must be subjected to a functional burst test as outlined in section 2.4.2 to evaluate performance degradation of the hose.

# 3.4 Leg 3 – Thermal + Mechanical Durability

# 3.4.1 High Temperature and Humidity Endurance (HTHE) $\searrow$

HTHE testing should first be performed on 8 DUT assemblies as outlined in Section 3.3.3. Testing should be conducted for 300 hours for leg 3, not the 1000 hours outlined in leg 2.

# 3.4.2 Coolant Thermal Shock (CTS)

#### 3.4.2.1 Purpose

Validate the ability of the DUT to withstand thermal cycling stress due to the heating and cooling of the coolant within the coolant system.

#### 3.4.2.2 Test Procedure

| Test                  | Description     |
|-----------------------|-----------------|
|                       |                 |
| Sample Size           | 8               |
|                       |                 |
| Operation mode of DUT | Flowing Coolant |
| <u> </u>              |                 |
| Tmin                  | -30°C           |
| Treav                 | 1590            |
| Tmax                  | 65°C            |

**UNCONTROLLED COPY** unless stamped "Controlled Copy" in red ink. Individuals using an uncontrolled copy are responsible for ensuring that they are using the latest revision of this document.

Tesla Motors, Inc. Proprietary and Confidential



|   | /             | 0           |           |
|---|---------------|-------------|-----------|
|   | Release Date: | Document #: | Revision: |
| 5 | TBD           | TP-0000972  | 1.0       |

| Ramp Rate<br>Isothermal Hold at Tmin                                                                                                                                                                                                                                                             | Instantaneous<br>30 minutes                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| and Tmax                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |  |  |
| Pressure                                                                                                                                                                                                                                                                                         | 20-30 pst                                                                                                                                                 |  |  |
| Duration                                                                                                                                                                                                                                                                                         | 500 cycles                                                                                                                                                |  |  |
| Monitoring                                                                                                                                                                                                                                                                                       | <ul> <li>Leak check ever 100 cycles</li> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |  |
| Test Procedure:                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |  |  |
| <ol> <li>Place DUT into the coolant loop of the tester</li> <li>Flow coolant at -30°C for 30 minutes, at a pressure of 20-30 psi.</li> <li>Switch coolant flow to a coolant at 65°C for 30 minutes,<br/>maintaining a pressure of 20-30 psi.</li> <li>Repeat the test for 500 cycles.</li> </ol> |                                                                                                                                                           |  |  |

#### 3.4.2.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

# 3.4.3 Pressure Cycling Endurance

#### 3.4.3.1 Purpose

Validate the ability of the DUT to withstand pressure cycles experienced within the battery cooling system during normal operation

#### 3.4.3.2 Test Procedure

| Test | Description |
|------|-------------|
|      |             |



TBD

| Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Operation mode of DUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flowing Coolant                                                                                                                                                 |  |  |  |
| Tmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -30°C                                                                                                                                                           |  |  |  |
| Tmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65°C                                                                                                                                                            |  |  |  |
| Ramp Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4°C/min                                                                                                                                                         |  |  |  |
| Isothermal Hold at Tmin<br>and Tmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 hour                                                                                                                                                          |  |  |  |
| Min Pressure, Pmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 psi 🕠                                                                                                                                                         |  |  |  |
| Max Pressure, Pmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 psi                                                                                                                                                          |  |  |  |
| Pressure Ramp Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Instantaneous                                                                                                                                                   |  |  |  |
| Soak time at Pmin and<br>Pmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 seconds                                                                                                                                                       |  |  |  |
| Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100k cycles                                                                                                                                                     |  |  |  |
| Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Continuous leak check monitoring</li> <li>Visual Inspection before and after the test</li> <li>Dimensional inspection before and after test</li> </ul> |  |  |  |
| Test Procedure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 |  |  |  |
| <ol> <li>Place DUT into the coolant loop of the tester</li> <li>Decrease the coolant temperature to -30°C at 4°C/min</li> <li>Begin intaneously cycling pressure of the system between 1 and 30 psi, soaking at 5 seconds for each pressure</li> <li>While pressure cycling, cycle the coolant temperature between - 30°C and 65°C at 4°C/min, holding isothermal at Tmin and Tmax for 1 hour</li> <li>Continue pressure and coolant temerpature cycling until 100k pressure cycles have been achieved.</li> </ol> |                                                                                                                                                                 |  |  |  |

#### 3.4.3.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Damage on the hoses or connectors
- Coolant Leaking

# 3.4.4 Vibration with Thermal Cycling

Following the completion of Pressure Cycling Endurance testing, the 8 DUTs should be subjected to vibration testing as outlined in Section 3.2.1.

# 3.4.5 Burst Test

Following testing of all components through the thermal + mechanical durability leg, three samples must be subjected to a functional burst test as outlined in section 2.4.210 evaluate performance degradation of the hose.

# 3.5 Leg 4 – Handling and Abuse

#### 3.5.1 Cable Bend Test

#### 3.5.1.1 Purpose

Validate the ability of the DUT to withstand multiple bends that may be experienced during installation on the assembly line.

#### 3.5.1.2 Test Procedure

| Test                           | Description |
|--------------------------------|-------------|
| Sample Size                    | 8 •         |
| -                              |             |
| Operation mode of DUT          | No Coolant  |
| <b>Environmental Condition</b> | Ambient *   |
| Angle of Bend                  | 30 Degrees  |
| ~                              |             |



| Release Date: | Document #: | Revision: |
|---------------|-------------|-----------|
| TBD           | TP-0000972  | 1.0       |

| Duration                |                                             | 30 reverse bends                                                |  |
|-------------------------|---------------------------------------------|-----------------------------------------------------------------|--|
|                         |                                             | <ul> <li>Visual Inspection before and after the test</li> </ul> |  |
| Monitoring              |                                             | Dimensional inspection before and after test                    |  |
|                         |                                             |                                                                 |  |
| Test Procedu            | ire:                                        |                                                                 |  |
| 1.                      | 1. Rigidly fix the coolant hose at one end  |                                                                 |  |
| 2.                      | 2. Apply a load to bend the hose 30 degrees |                                                                 |  |
| 3.                      | Reverse the I                               | oad to bend the hose 30 degrees in the opposite                 |  |
| 4. Repeat for 30 cycles |                                             |                                                                 |  |
|                         |                                             |                                                                 |  |

#### 3.5.1.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

- Cracking of the hose body
- Discoloration near the fixed portion of the hose

#### 3.5.2 Handling Drop Test

#### 3.5.2.1 Purpose

Validate the ability of the DUT to withstand drops that may occur during assembly.

#### 3.5.2.2 Test Procedure

| Test                           | Description |
|--------------------------------|-------------|
|                                |             |
| Sample Size                    | 8           |
|                                |             |
| Operation mode of DUT          | No Coolant  |
|                                |             |
| <b>Environmental Condition</b> | Ambient     |
|                                |             |
| Height of Drop                 | 1 meter     |
|                                |             |
| Duration                       | 10 drops    |



| Release Date: | Document # |
|---------------|------------|
| TBD           | TP-0000972 |

Revision:

1.0

| Monitoring | • | Visual Inspection before and after the test<br>Dimensional inspection before and after test |
|------------|---|---------------------------------------------------------------------------------------------|
|            |   |                                                                                             |

#### **Test Procedure:**

- 1. Drop the DUT from a height of 1 meter onto a concrete surface
- 2. Repeat 10 times

#### 3.5.2.3 Pass Criteria

The test has to be passed before further testing of the DUT is performed. All DUTs must be completely functional before and after this test as defined in the component specification document.

During the visual inspection, ensure that none of the following failure modes are visible:

Cracking of the hose body or connectors

#### 3.5.3 **Burst Test**

Following testing of all components through the handling and abuse leg, three samples must be subjected to a functional burst test as outlined in section 2.4.2 to evaluate performance degradation of the hose.

# 4 References and Glossary

#### 4.1 Normative References

| No | Standard                      | Description                                                                                                                                          |  |  |
|----|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | DIN 40050                     | Road vehicles; degrees of protection (IP-code); protection against foreign objects; water and contact; electrical equipment                          |  |  |
| 2  | DIN 50018                     | Testing in a saturated atmosphere in the presence of sulfur dioxide                                                                                  |  |  |
| 3  | DIN EN 60512<br>(3,6,9,10,12) | Electromechanical components for electronic equipment; basic testing procedures and measuring methods                                                |  |  |
| 4  | DIN EN ISO 6270-2:<br>2005-09 | Paints and varnishes; Determination of resistance to humidity; Part 2:<br>Procedure for exposing test specimens in condensation-water<br>atmospheres |  |  |
| 5  | DIN EN ISO 9227               | Corrosion tests in artificial atmospheres; Salt spray tests                                                                                          |  |  |



..

••

# Reliability Testing and Validation SpecificationRelease Date:Document #:Revision:TBDTP-00009721.0

| No | Standard       | Description                                                                       |  |  |
|----|----------------|-----------------------------------------------------------------------------------|--|--|
| 6  | GMW14872       | General Motors Cyclic Corrosion Laboratory Test Procedure                         |  |  |
| 7  | GMW3172        | General Motors Electrical/Electronic Component Reliability Validation<br>Standard |  |  |
| 8  | GMW8287        | General Motors HALT process                                                       |  |  |
| 9  | IEC 60068-1    | Environmental testing - General and Guidance                                      |  |  |
| 10 | IEC 60068-2-1  | Cold                                                                              |  |  |
| 11 | IEC 60068-2-10 | Mold growth                                                                       |  |  |
| 12 | IEC 60068-2-11 | Salt mist                                                                         |  |  |
| 13 | IEC 60068-2-13 | Low air pressure                                                                  |  |  |
| 14 | IEC 60068-2-14 | Change of temperature                                                             |  |  |
| 15 | IEC 60068-2-2  | Dry heat                                                                          |  |  |
| 15 | IEC 60068-2-27 | Shock                                                                             |  |  |
|    |                |                                                                                   |  |  |
| 17 | IEC 60068-2-30 | Damp heat, cyclic                                                                 |  |  |
| 18 | IEC 60068-2-31 | Rough handling shock, primarily for equipment-type specimens                      |  |  |
| 19 | IEC 60068-2-38 | Composite temperature/humidity cyclic test                                        |  |  |
| 20 | IEC 60068-2-39 | Combined sequential cold, low air pressure, and damp heat test                    |  |  |
| 21 | IEC 60068-2-40 | Combined cold/low air pressure tests                                              |  |  |
| 22 | IEC 60068-2-41 | Combined dry heat/low air pressure tests                                          |  |  |
| 23 | IEC 60068-2-42 | Sulphur dioxide test for contacts and connections                                 |  |  |
| 24 | IEC 60068-2-43 | Hydrogen sulphide test for contacts and connections                               |  |  |
| 25 | IEC 60068-2-45 | Immersion in cleaning solvents                                                    |  |  |
| 26 | IEC 60068-2-46 | Hydrogen sulphide test for contacts and connections                               |  |  |
| 27 | IEC 60068-2-47 | Mounting of specimens for vibration, impact, and similar dynamic tests            |  |  |
| 28 | IEC 60068-2-5  | Simulated solar radiation                                                         |  |  |



# Reliability Testing and Validation SpecificationRelease Date:Document #:Revision:TBDTP-00009721.0

| No | Standard       | Description                                                                  |
|----|----------------|------------------------------------------------------------------------------|
| 29 | IEC 60068-2-53 | Combined climatic (temperature/humidity) and dynamic (vibration/shock) tests |
| 30 | IEC 60068-2-57 | Time history and sine beat method                                            |
| 31 | IEC 60068-2-59 | Vibration - Sine-beat method                                                 |
| 32 | IEC 60068-2-6  | Sinusoidal vibration test                                                    |
| 33 | IEC 60068-2-60 | Flowing mixed gas corrosion test                                             |
| 34 | IEC 60068-2-61 | Climatic sequence                                                            |
| 35 | IEC 60068-2-64 | Broadband (random) vibration test                                            |
| 36 | IEC 60068-2-65 | Acoustically induced method                                                  |
| 37 | IEC 60068-2-66 | Damp heat, steady state (unsaturated pressurized vapor)                      |
| 38 | IEC 60068-2-67 | Damp heat, steady state, accelerated test primarily intended for components  |
| 39 | IEC 60068-2-68 | Dust and sand                                                                |
| 40 | IEC 60068-2-7  | Acceleration, steady state                                                   |
| 41 | IEC 60068-2-70 | Abrasion of marking and lettering due to rubbing of fingers/ hands           |
| 42 | IEC 60068-2-74 | Fluid contamination                                                          |
| 43 | IEC 60068-2-75 | Hammer test                                                                  |
| 44 | IEC 60068-2-77 | Body strength and impact shock                                               |
| 45 | IEC 60068-2-78 | Damp heat, steady state                                                      |
| 46 | IEC 60068-2-80 | Vibration - Mixed mode                                                       |
| 47 | IEC 60068-2-81 | Shock response spectrum synthesis                                            |
| 48 | IEC 60068-2-82 | Whisker test methods for electronic and electric components                  |
| 49 | IEC 60068-3-1  | Cold and dry heat tests                                                      |
| 50 | IEC 60529      | Degrees of protection provided by enclosures (IP Code)                       |



# Reliability Testing and Validation SpecificationRelease Date:Document #:Revision:TBDTP-00009721.0

| No | Standard                                          | Description                                                                                                               |  |
|----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 51 | IEC 60749 (1,3,4,5,6,10,<br>12,13,14,25,36,37,40) | Semiconductor devices - Mechanical and climatic test methods                                                              |  |
| 52 | ISO 12103-1                                       | Road vehicles - Test dust for filter evaluation; Part 1: Arizona test dust                                                |  |
| 53 | ISO 16750-1                                       | Environmental conditions and testing for electrical and electronic equipment - General                                    |  |
| 54 | ISO 16750-2                                       | Electrical loads                                                                                                          |  |
| 55 | ISO 16750-3                                       | Mechanical loads                                                                                                          |  |
| 56 | ISO 16750-4                                       | Climatic loads                                                                                                            |  |
| 57 | ISO 16750-5                                       | Chemical loads                                                                                                            |  |
| 58 | ISO/IEC 17025                                     | General requirements for the competence of testing and calibration laboratories                                           |  |
| 59 | LV124                                             | V124 Electric and electronic components in motor vehicles up to 3.5 t<br>General requirements, test conditions, and tests |  |
| 60 | MBN 10 305-1                                      | Daimler E/E Environmental Testing; Part 1: Test Specifications                                                            |  |
| 61 | MBN 10 305-1                                      | Daimler E/E Environmental Testing; Part 2: Test Selection Process                                                         |  |
| 62 | ISO 26262                                         | Road vehicles - Functional safety                                                                                         |  |



# 4.2 Acronyms

Release Date:

TBD

| Acr.  | Definition                             | Acr.              | Definition                                               |
|-------|----------------------------------------|-------------------|----------------------------------------------------------|
| AOI   | Automatic Optical Inspection           | PTCE              | Power Temperature Cycling Endurance                      |
| AVL   | Approved Vendor List                   | РТН               | Plated Through Hole                                      |
| BGA   | Ball Grid Array                        | R                 | Reliability                                              |
| CAD   | Computer Aided Design                  | RA                | Risk Assessment                                          |
| СМ    | Coffin-Manson Parameter                | rH                | Relative Humidity                                        |
| CTE   | Coefficient of Thermal Expansion       | RV                | Robustness Validation                                    |
| DfM   | Design for Manufacturing               | SAC               | SnAgCu Lead Free Solder                                  |
| DFMEA | Design Failure Mode Effects & Analysis | SILC              | Stress Induced Leakage Current                           |
| DfR   | Design for Reliability                 | SMD               | Surface Mounted Device                                   |
| DfT   | Design for Test                        | SS                | Steady State                                             |
| DUT   | Device Under Test                      | T <sub>amb</sub>  | Ambient Temperature of the DUT                           |
| ECU   | Electronic Control Unit                | T <sub>atm</sub>  | Temperature of the Atmosphere                            |
| EEM   | Electric and Electronic Module         | Tc                | Temperature Cycling                                      |
| f     | Frequency                              | T <sub>comp</sub> | Temperature of the Component (resistor, capacitor, etc.) |
| FCT   | Functional Test                        | t <sub>f</sub>    | Fall time                                                |
| FEM   | Finite Element Method                  | T <sub>in</sub>   | Internal Air Temperature on the Board                    |
| HALT  | High Accelerated Life Testing          | T <sub>max</sub>  | Maximum Ambient Temperature                              |
| HASS  | High Accelerated Stress Screening      | T <sub>min</sub>  | Minimum Ambient Temperature                              |
| HAST  | Highly Accelerated Stress Test         | T <sub>Omin</sub> | Minimum Operating Temperature                            |
| HTHE  | High Temperature Humidity Endurance    | T <sub>Omax</sub> | Maximum Operating Temperature                            |



TBD

| Acr.           | Definition                           | Acr.               | Definition                      |
|----------------|--------------------------------------|--------------------|---------------------------------|
| HTOE           | High Temperature Operating Endurance | t <sub>R</sub>     | Rise Time                       |
| HTOL           |                                      |                    | Room Temperature ((23 ± 5) °C.  |
| HTS            | High Temperature Storage             | TS                 | Thermal Shock                   |
| ІСТ            | In Circuit Test                      | T <sub>Test</sub>  | Test Temperature                |
| I <sub>N</sub> | Nominal current                      | t <sub>Test</sub>  | Testing time                    |
| LTOE           | Low Temperature Operating Endurance  | TTF                | Test To Failure                 |
| МР             | Mission Profile                      | UHAST              | Unbiased HAST                   |
| MTBF           | Mean-Time-Between-Failure            | U <sub>max</sub>   | Maximum Voltage                 |
| MTTF           | Mean-Time-To-Failure                 | U <sub>min</sub>   | Minimum Voltage                 |
| ΟΕΜ            | Original Equipment Manufacturer      | UN                 | Nominal Voltage                 |
| ОМ             | Operation Mode                       | Uo                 | Operating Voltage               |
| ΡΑ             | Confidence                           | U <sub>Omax</sub>  | Maximum Operating Voltage Limit |
| РС             | Power cycling                        | U <sub>Omin</sub>  | Minimum Operating Voltage Limit |
| РСВ            | Printed Circuit Board                | Upp                | Peak-to-Peak Voltage            |
| PoF            | Physics of Failure                   | U <sub>Test</sub>  | Test Voltage                    |
| PSD            | Power Spectral Density <sup>1</sup>  | U <sub>const</sub> | Constant Voltage Stress         |
| РТС            | Power Temperature Cycling            | U <sub>th</sub>    | Threshold Voltage               |

<sup>1</sup>PSD describes the power of random vibration intensity in g2/Hz or [(m/s2)2/Hz] where, 1 g equals 9.80665 m/s<sup>2</sup>. Over a frequency bandwidth, random vibration is expressed in units of root mean squared acceleration, GRMS.

| Ŷ     | pecification  |             |           |
|-------|---------------|-------------|-----------|
| V     | Release Date: | Document #: | Revision: |
| TESLA | TBD           | TP-0000972  | 1.0       |